Structural basis of differences in isoform-specific gating and lidocaine block between cardiac and skeletal muscle sodium channels.

نویسندگان

  • Ronald A Li
  • Irene L Ennis
  • Gordon F Tomaselli
  • Eduardo Marbán
چکیده

Voltage-gated Na(+) channels underlie rapid conduction in heart and skeletal muscle. Cardiac sodium channels open and close over more negative potentials than do skeletal muscle sodium channels; heart channels are also more sensitive to lidocaine block. The structural basis of these differences is poorly understood. We mutated nine isoform-specific micro1 (rat skeletal muscle) channel residues in domain IV to those at equivalent locations in hH1 (human cardiac) channels. Channel constructs were expressed in tsA-201 cells and screened for changes in gating and lidocaine sensitivity. Only L1373E, located in the linker between the S1 and S2 transmembrane segments, shifted activation gating and use-dependent block by lidocaine toward that seen in hH1. The converse mutation, hH1-E1555L, shifted the phenotype of hH1 to resemble that of micro1. Therefore, we identified a previously unsuspected glutamate-to-leucine isoform-specific variant site (i.e., 1555 in hH1 and 1373 in micro1) that significantly influences gating and drug block in sodium channels. The identification of the residue at this position plays a major role in shaping the responses of sodium channels to voltage and to lidocaine, helping to rationalize the distinctive behavior of cardiac sodium channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiac-specific external paths for lidocaine, defined by isoform-specific residues, accelerate recovery from use-dependent block.

Local anesthetic antiarrhythmic drugs block voltage-gated Na(+) channels from the cytoplasmic side. In addition, cardiac Na(+) channels can be also blocked by the membrane-impermeant local anesthetic QX via external paths not present in skeletal muscle or brain channels. Introduction of cardiac isoform-specific residues into wild-type skeletal muscle or brain channels creates access paths for e...

متن کامل

A critical residue for isoform difference in tetrodotoxin affinity is a molecular determinant of the external access path for local anesthetics in the cardiac sodium channel.

Membrane-impermeant quaternary derivatives of lidocaine (QX222 and QX314) block cardiac Na(+) channels when applied from either side of the membrane, but they block neuronal and skeletal muscle channels poorly from the outside. To find the molecular determinants of the cardiac external QX access path, mutations of adult rat skeletal muscle (micro1) and rat heart (rH1) Na(+) channels were studie...

متن کامل

Cardiac sodium channels (hH1) are intrinsically more sensitive to block by lidocaine than are skeletal muscle (mu 1) channels

When lidocaine is given systemically, cardiac Na channels are blocked preferentially over those in skeletal muscle and nerve. This apparent increased affinity is commonly assumed to arise solely from the fact that cardiac Na channels spend a large fraction of their time in the inactivated state, which exhibits a high affinity for local anesthetics. The oocyte expression system was used to compa...

متن کامل

Altered gating and local anesthetic block mediated by residues in the I-S6 and II-S6 transmembrane segments of voltage-dependent Na+ channels.

The cytoplasmic side of the voltage-dependent Na+ channel pore is putatively formed by the S6 segments of domains I to IV. The role of amino acid residues of I-S6 and II-S6 in channel gating and local anesthetic (LA) block was investigated using the cysteine scanning mutagenesis of the rat skeletal muscle Na+ channel (Nav1.4). G428C uniquely reduced sensitivity to rested state or first-pulse bl...

متن کامل

Blockade of cardiac sodium channels by lidocaine. Single-channel analysis.

The mechanism of interaction of lidocaine with cardiac sodium channels during use-dependent block is not well defined. We examined the blockade of single cardiac sodium channels by lidocaine and its hydrophobic derivative RAD-242 in rabbit ventricular myocytes. Experiments were performed in cell-attached and inside-out patches. Use-dependent block was assessed with trains of ten 200-msec pulses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 61 1  شماره 

صفحات  -

تاریخ انتشار 2002